Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia.

نویسندگان

  • Maureen H Diaz
  • Alan R Hauser
چکیده

ExoU, a cytotoxin translocated into host cells via the type III secretion system of Pseudomonas aeruginosa, is associated with increased mortality and disease severity. We previously showed that impairment of recruited phagocytic cells allowed survival of ExoU-secreting P. aeruginosa in the lung. Here we analyzed types of cells injected with ExoU in vivo using translational fusions of ExoU with a beta-lactamase reporter (ExoU-Bla). Cells injected with ExoU-Bla were detectable in vitro but not in vivo, presumably due to the rapid cytotoxicity induced by the toxin. Therefore, we used a noncytotoxic ExoU variant, designated ExoU(S142A)-Bla, to analyze injection in vivo. We determined that phagocytic cells in the lung were frequently injected with ExoU(S142A). Early during infection, resident macrophages constituted the majority of cells into which ExoU was injected, but neutrophils and monocytes became the predominant types of cells into which ExoU was injected upon recruitment into the lung. We observed a modest preference for injection into neutrophils over injection into other cell types, but in general the repertoire of injected immune cells reflected the relative abundance of these cells in the lung. Our results indicate that phagocytic cells in the lung are injected with ExoU and support the hypothesis that ExoU-mediated impairment of phagocytes has a role in the pathogenesis of pneumonia caused by P. aeruginosa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread.

Pseudomonas aeruginosa is the nosocomial bacterial pathogen most commonly isolated from the respiratory tract. Animal models of this infection are extremely valuable for studies of virulence and immunity. We thus evaluated the utility of a simple model of acute pneumonia for analyzing P. aeruginosa virulence by characterizing the course of bacterial infection in BALB/c mice following applicatio...

متن کامل

ExoU Activates NF-κB and Increases IL-8/KC Secretion during Pseudomonas aeruginosa Infection

ExoU, a Pseudomonas aeruginosa cytotoxin injected into host cytosol by type III secretion system, exhibits a potent proinflammatory activity that leads to a marked recruitment of neutrophils to infected tissues. To evaluate the mechanisms that account for neutrophil infiltration, we investigated the effect of ExoU on IL-8 secretion and NF-κB activation. We demonstrate that ExoU increases IL-8 m...

متن کامل

Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU.

A number of bacterial pathogens utilize the type III secretion pathway to deliver effector proteins directly into the host cell cytoplasm. Certain strains of Pseudomonas aeruginosa associated with acute infections express a potent cytotoxin, exoenzyme U (ExoU), that is delivered via the type III secretion pathway directly into contacting host cells. Once inside the mammalian cell, ExoU rapidly ...

متن کامل

The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response

Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regu...

متن کامل

Type III Secretion of ExoU Is Critical during Early Pseudomonas aeruginosa Pneumonia

UNLABELLED The Pseudomonas aeruginosa type III secretion system has been associated with poor outcomes in both animal models and human patients. Despite a large number of studies exploring the regulation of type III secretion in vitro, little is known about the timing of secretion during mammalian infection. Here we demonstrate that the exoU gene, which encodes the highly cytotoxic type III eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 78 4  شماره 

صفحات  -

تاریخ انتشار 2010